Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones.

نویسندگان

  • Yehu Moran
  • Grigory Genikhovich
  • Dalia Gordon
  • Stefanie Wienkoop
  • Claudia Zenkert
  • Suat Ozbek
  • Ulrich Technau
  • Michael Gurevitz
چکیده

Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficiency in sea water is further demonstrated by the rapid paralysis of fish or crustacean larvae upon application of recombinant Nv1 into their medium. Analysis of other anemone species reveals that in Anthopleura elegantissima, Type I neurotoxins also appear in gland cells, whereas in the common species Anemonia viridis, Type I toxins are localized to both nematocytes and ectodermal gland cells. The nematocyte-based and gland cell-based envenomation mechanisms may reflect substantial differences in the ecology and feeding habits of sea anemone species. Overall, the immunolocalization of neurotoxins to gland cells changes the common view in the literature that sea anemone neurotoxins are produced and delivered only by stinging nematocytes, and raises the possibility that this toxin-secretion mechanism is an ancestral evolutionary state of the venom delivery machinery in sea anemones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Polychaete’s Powerful Punch: Venom Gland Transcriptomics of Glycera Reveals a Complex Cocktail of Toxin Homologs

Glycerids are marine annelids commonly known as bloodworms. Bloodworms have an eversible proboscis adorned with jaws connected to venom glands. Bloodworms prey on invertebrates, and it is known that the venom glands produce compounds that can induce toxic effects in animals. Yet, none of these putative toxins has been characterized on a molecular basis. Here we present the transcriptomic profil...

متن کامل

Continuous Drug Release by Sea Anemone Nematostella vectensis Stinging Microcapsules

Transdermal delivery is an attractive option for drug delivery. Nevertheless, the skin is a tough barrier and only a limited number of drugs can be delivered through it. The most difficult to deliver are hydrophilic drugs. The stinging mechanism of the cnidarians is a sophisticated injection system consisting of microcapsular nematocysts, which utilize built-in high osmotic pressures to inject ...

متن کامل

Toxicity and Potential Pharmacological Activities in the Persian Gulf Venomous Sea Anemone, Stichodactyla haddoni

Numerous proteins and peptides in venomous marine animals are potentially active molecules with pharmacological properties. Particular condition of the Persian Gulf as a closed ecosystem is a good opportunity to study of biological activities and toxicity of venomous animals. In this study, Stichodactyla haddoni (S. haddoni), a sea anemone, selected to tracing for possible pharmaceutical agents...

متن کامل

Toxicity and Potential Pharmacological Activities in the Persian Gulf Venomous Sea Anemone, Stichodactyla haddoni

Numerous proteins and peptides in venomous marine animals are potentially active molecules with pharmacological properties. Particular condition of the Persian Gulf as a closed ecosystem is a good opportunity to study of biological activities and toxicity of venomous animals. In this study, Stichodactyla haddoni (S. haddoni), a sea anemone, selected to tracing for possible pharmaceutical agents...

متن کامل

Delayed initiation of SS1 pulses in the sea anemone Calliactis parasitica: evidence for a fourth conducting system.

1. Single electrical shocks to the column sometimes elicit a series of 1-6 pulses in the SS1 (ectodermal slow system) but the first pulse does not appear until 5-28 s after stimulation. These pulses occur in addition to the early SS1 pulse which follows every shock and which has a conduction delay of less than 1 s. 2. The threshold of the delayed SS1 response is different from the thresholds of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 279 1732  شماره 

صفحات  -

تاریخ انتشار 2012